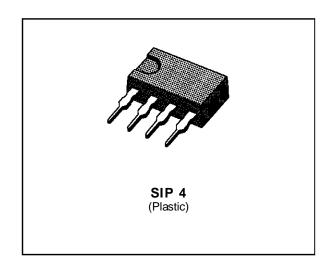
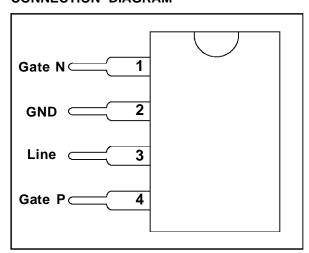


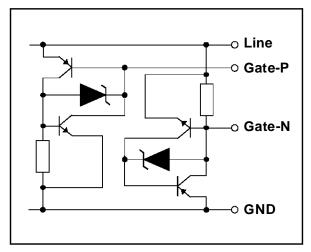
PROGRAMMABLE TRANSIENT VOLTAGE SUPPRESSOR


FEATURES

- BIDIRECTIONAL FUNCTION WITH VOLTAGE PROGRAMMABILITY IN BOTH POSITIVE AND NEGATIVE POLARITIES.
- PROGRAMMABLE BREAKDOWN VOLTAGE UP TO 100 V.
- HOLDING CURRENT = 150 mA min.
- HIGH SURGE CURRENT CAPABILITY. IPP = 100A, 10/1000 µs

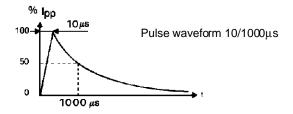
This device has been especially designed to protect a subscriber line card interface (SLIC) with a integrated ring generator.


Used with the recommended application circuit, each line (TIP and RING) is protected against positive and negative surges. In the positive polarity, the breakdown voltage is referenced to the + VB , and in the negative polarity, the breakdown voltage is referenced to the -Vbat . Its high surge current capability makes the L3121B a reliable protection device for very exposed equipment, or when series resistors are very low.


IN ACCORDANCE WITH FOLLOWING STANDARDS:

CCITT K17 - K20	{	10/700 μs 5/310 μs	1.5 kV 38 A
VDE 0433	{	10/700 μs 5/200 μs	2 kV 50 A
CNET	{	0.5/700 μs 0.2/310 μs	1.5 kV 38 A

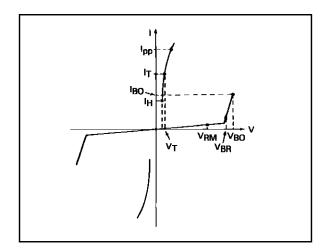
CONNECTION DIAGRAM



SCHEMATIC DIAGRAM

ABSOLUTE RATINGS (limiting values) (- $40^{\circ}C \le T_{amb} \le +85^{\circ}C$)

Symbol	Parameter	Value	Unit
lpp	Peak pulse current	100 250	А
ITSM	Non repetitive surge peak on-state current	50	Α
di/dt	Critical rate of rise of on-state current	100	A/μs
V _{MLG} V _{MGL}	Maximum voltage LINE/GND. Maximum voltage GATE/LINE.	100 80	V
T _{stg} T _j	Storage and operating junction temperature ran	- 40 to + 150 150	°C



THERMAL RESISTANCE

Symbol	Parameter	Value	Unit
R _{th} (j-a)	Junction-to-ambient	80	°C/W

ELECTRICAL CHARACTERISTICS.

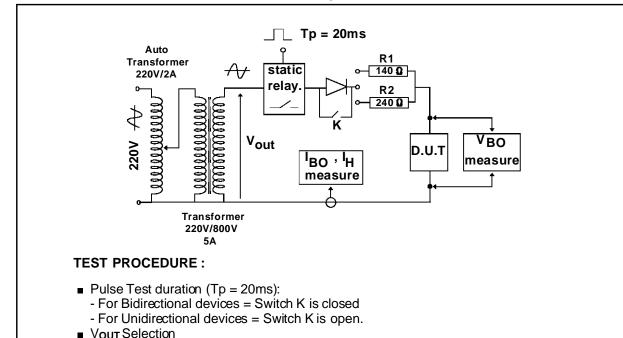
Symbol	Parameter			
V _{RM}	Stand-off voltage			
VBR	Breakdown voltage			
V _{BO}	Breakover voltage			
lH	Holding current			
VT	On-state voltage @ IT			
IBO	Breakover current			
lpp	Peak pulse current			
VG	Gate voltage			
lG	Firing gate current			

OPERATION WITHOUT GATE.

Туре	IRM @	@ V _{RM} V _{BR} @		@ R	V _{BO}	@	Во	lн	VT	С
	max		min		max	Тур	max	min	max	max
						note 1		note 1	note 2	note 3
	μ Α	V	٧	mA	٧	mA	mA	mA	٧	pF
L3121B	5 8	60 90	100	1	180	200	500	150	2	200

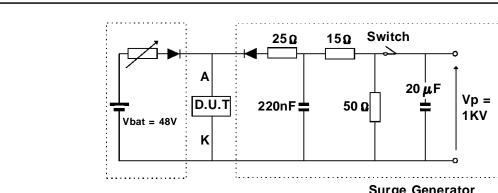
OPERATION WITH GATES.

Туре	V _{GN} @ I _{GN} = 200mA		IGN @	V _{AC} = 60V	IGP @ VAC = 60V	
	min max min m		max	max		
	V	V	mA	mA	mA	
L3121B	0.6	1.8	80	200	180	


All parameters tested at 25°C, except where indicated.

See the reference test circuit for I_H, I_{BO} and V_{BO} parameters. Square pulse T_P= 500 μ s -I_T = 1A. V_R = 5 V, F = 1MHz. Note 1 : Note 2 :

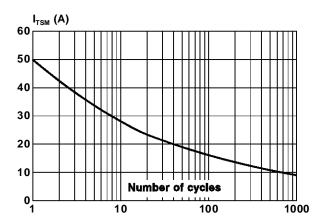
Note 3:



REFERENCE TEST CIRCUIT FOR IH, IBO and VBO parameters :

- Device with V_{BR} ≤ 150 Volt
 - V_{OUT} = 250 V_{RMS}, R₁ = 140 Ω.
- Device with V_{BR} ≥ 150 Volt
 - Vout = 480 V_{RMS}, R_2 = 240 Ω .

FUNCTIONAL HOLDING CURRENT (IH) TEST CIRCUIT = GO - NOGO TEST.


Surge Generator 10/700 µsec Vp =1KV / lpp = 25A

This is a GO-NOGO Test which allows to confirm the holding current (I_H) level in a functional test circuit. This test can be performed if the reference test circuit can't be implemented.

TEST PROCEDURE:

- 1) Adjust the current level at the I_H value by short circuiting the AK of the D.U.T.
 - 2) Fire the D.U.T with a surge Current : Ipp = 25A, $10/700 \mu s$.
 - 3) The D.U.T will come back to the OFF-State within a duration of 50 ms max.

Figure 1: Non-repetitive surge peak on state current versus number of cycles. (with sinusoïdal pluse: F = 50 Hz).

Figure 2: Relative variation of holding current versus junction temperature.

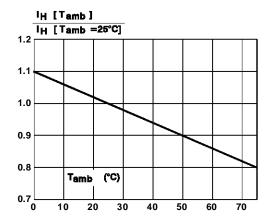
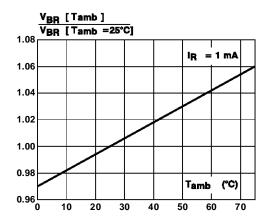
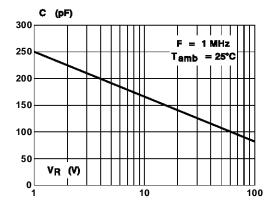




Figure 3 : Relative variation of breakdown voltage versus ambient temperature.

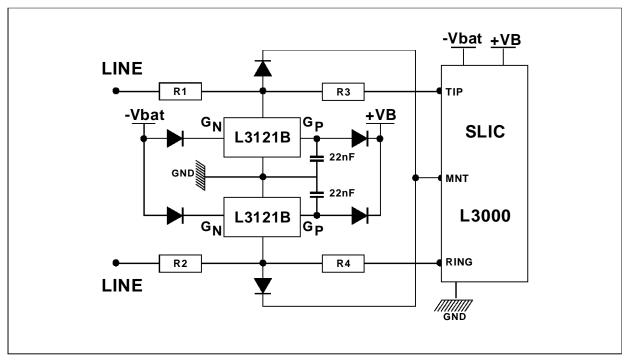
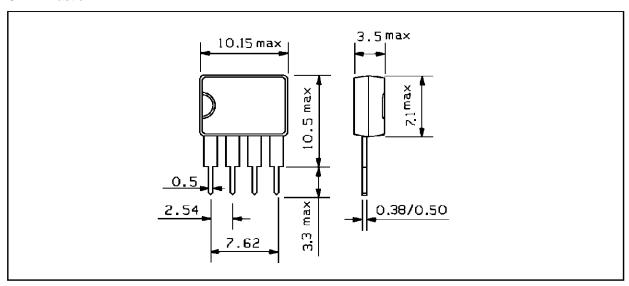


Figure 4: Junction capacitance versus reverse applied voltage.

APPLICATION CIRCUIT

Typical Slic Protection Concept.



MARKING: Logo, Date Code,part Number.

PACKAGING: Products supplied in antistatic tubes.

PACKAGE MECHANICAL DATA (in millimeters).

SIP 4 Plastic

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

Purchase of l^2C Components by SGS-THOMSON Microelectronics, conveys a licence under the Philips l^2C Patent. Rights to use these components in an l^2C system, is grantede provided that the system conforms to the l^2C Standard Specification as defined by Philips.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

